Drainage tree construction based on patterns in a river network

Ling Zhang, Nanjing Normal University, China Eric Guilbert, Laval University, Canada

Contents

- Introduction
- Related works
- Drainage tree construction
- Experiments and results
- Summary

Introduction

- Map generalization
 - "generalization is not a mere reduction of information – the challenge is one of preserving the geographic meaning" (Bard & Ruas, 2005)
- River network generalization
 - Drainage patterns
 - Topography, soil type, bedrock type, climate, vegetation cover

Introduction

Related works

- Ordering scheme for river tributaries
 - Horton-Strahler scheme
 - Shreve scheme

A. Horton-Strahler order scheme

B. Shreve order scheme

- Coding system for drainage basins
 - Prafstetter codification

No consideration of drainage patterns

Construction methods

- Identify reticulate patterns
- Build a drainage tree of sub-networks
- Characterize drainage patterns
- Merge adjacent pattern of same type

Identify reticulate patterns Bridge-finding algorithm

Remove and replace as nodes

- Build a drainage tree of sub-networks
 - Horton-Strahler scheme (Strahler, 1957)
 - Main stream represents each sub-network
 - From upstream to downstream

- Characterize drainage patterns
 - Geometric indicators (Junction angle, sinuosity, length ratio, catchment elongation)
 - Fuzzy logic

Zhang & Guilbert, 2013

- Merge adjacent pattern of same type
 - From the root to leaves
 - If adjacent sub-networks are same pattern, they can be merged
 - Adjacent: If connect to same segment and lie on the same side, or connect to a same node

Adjacent sub-networks:

connect to same segment and lie on the same side

connect to a same node

Experiments

- Experimental data
 - Russian river, California, USA, 1:24000 scale
- Drainage tree result
- Multiple representation of drainage tree at different levels

Result

 Drainage tree

Sub-networks starting from order 4 Sub-networks starting from order 3 Sub-networks starting from order 2

Result

 Drainage tree

Sub-networks starting from order 4 Sub-networks starting from order 3 Sub-networks starting from order 2

Result

Multiple representatio n of drainage trees at different levels

Summary

- Drainage pattern hierarchy
- A recursive method, implement easily
- Provide a qualitative description of terrain
- Used for generalization
- Future work
 - Influence of scale
 - More application