

Department of Geography

Integration of folksonomies into the process of map generalization

Meysam Aliakbarian and Robert Weibel

GIScience Center, Department of Geography University of Zurich

AGILE 2016 Workshop on Generalisation and Multiple Representation

Agenda

- Motivation
- Background
- Methodology
- Results
- Outlook

Motivation

- User Generated Content (UGC) is growing in:
 - quantity
 - diversity
 - quality
- Most of UGC content have a geographic component
- Cartographic products based on UGC content need to focus more on the hidden knowledge.

Background – Pillar I

Folksonomies

- Taxonomies formed by tagging behavior of user
- Studies are on *relation (y)* between *users*, *resources* and *tags:*
 - F=f(u,r,t,y)
- First examples are based on tagging behavior of user in social bookmarking systems.

Background – Pillar II

OSM

- Features are stored in form of *nodes*, *ways*, *relations*
- Users enrich features with tags (key, value)
- Tagging policies are agreed upon users in OSM wiki
- Shared agreed tags can be taken as users common agreement on features
- Folksonomy:
 - features -> resource
 - tags -> tags

Background – Pillar III

Semantic similarity

- Notion of similarity (relatedness) between concepts
- Level of commonality is being measured
- Different measures are available in the literature:
 - Jaccard $sim_Jaccard(X,Y) = \frac{|X \cap Y|}{|X \cup Y|}$ • Dice $sim_Jce(X,Y) = \frac{2|X \cap Y|}{|X|+|Y|}$
 - Cosine $sim_cosine(X,Y) = \frac{X \cdot Y}{\|X\| \|Y\|}$

Background – Pillar IV

Generalization

- Taking constraint-based modeling as state of the art
- Three-fold relation between *constraints*, *measures* and *relations* (Steiniger and Weibel 2007)

Methodology

Semantic similarity in Generalization

- Calculating feature-feature similarity
 - Taking a feature as a central feature
 - Calculating similarity of other features (feature-feature)
 - Including the measures into generalization operator
- Notion of similar/dissimilar

$$s = Sim(X, Y) : \begin{cases} s < \alpha \to dissimilar \\ \alpha \le s \le \beta \to similar \\ s > \beta \to test \text{ if } X = Y \end{cases}$$

1

• Including values in similarity measure

sure

$$Sim_{KeyValue}(X,Y) = \underbrace{ \begin{array}{c} 2|K_{X} \cap K_{Y}| \\ |X|+|Y| \\ 2 \end{array}} \underbrace{ |V_{X} \cap V_{Y}| \\ |K_{X} \cap K_{Y}| \\ 2 \end{array} }$$

Methodology

Modification of Generalization operators

- Selection
 - Selecting semantically similar features
 - Selecting semantically dissimilar features

Methodology

Modification of Generalization operators

- Aggregation
 - Aggregating semantically similar features to a new feature
 - Spatial constraint is needed

Results

Biei en bie de gelegie en bie de gelegie en bie de la bi

Outlook

Outlook of the study

- Working on other generalization operators
- Tag-Tag analysis
- Spatial-Semantic combination
- Property inheritance for features

Department of Geography

Thank you!

Meysam Aliakbarian

meysam.aliakbarian@geo.uzh.ch

Robert Weibel

robert.weibel@geo.uzh.ch

References

- Steiniger, S., and Weibel, R. (2007). Relations among map objects in cartographic generalization. Cartography and Geographic Information Science, 34(3), 175-197.
- Vander Wal, T. (2005). Folksonomy. Presented at Online Information, 2005. Accessed at http://www.vanderwal.net/essays/051130/folksonomy.pdf on 31 March 2016.