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Abstract

Line generalization is one of the essential data processing operations in GIS and cartography. Many point
reduction, line simplification and generalization algorithms have been developed for this purpose so far. Several
specialized algorithms can be found that allow simplification of buildings — mainly to preserve their rectangular
shape and reproduce it in general form. In this article we present a more common methodology for simplification
of lines consisting of both natural (irregular) and artificial (orthogonal) segments. The core of the presented
methodology is an algorithm for detection of right angle sequences. After the line is subdivided into irregular and
orthogonal parts, their simplification is made separately by different approaches. The methodology is assesed
on the example from Russian admninistrative units.
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1 Introduction

Interest to line generalization lasts for nearly half a century. Li (2007) differentiates between point reduction,
smoothing and scale-driven generalization of lines. All generalization algorithms can be formally described in terms
of objectives, operations and workflows.

The objectives for line generalization are usually formulated in terms of conditions and constraints. Conditions,
at their point, can be classified into global and local ones.

Examples of global conditions are: Hausdorff distance (Haunert and Wolff, 2010), subsequence of vertices
(McMaster, 1987), the desired number of edges/vertices (Buchin et al., 2011) or spatial resolution (Li, Openshaw,
1992). Local conditions can be formulated in terms of: perpendicular distance (Douglas and Peucker, 1973), effective
area (Visvalingam, Whyatt, 1993), turning angle or curvature (Rosenfeld and Johnston, 1973), edge length or ratio
(Teh and Chin, 1989), bend area (Wang and Miiller, 1998) and so on.

Sometimes additional constraints are applied such as area preservation (Buchin et al., 2011) and shape preser-
vation (Wang and Miiller, 1998). Forcing all edges to follow the set of given directions, is the core constraint in
line schematization wokflows (Moulemans et al., 2010). One of the most important generalization constraints is the
preservation of topology (de Berg et al., 1998). All conditions and constraints must be accompanied by functions
that evaluate them while performing generalization operations.

The second component of line generalization algorithms are operations that are applied to the line. These in
turn can be classified into preprocessing and processing operations. Preprocessing operations are usually dealt
with enrichment of our knowledge about lines. For example, Wang and Miiller (1998) algorithm is based on line
segmentation into bends which are the parts of line with constant sign of the turning angle. Buchin et al (2011)
use arc and orientation detection and then wall squaring prior to polygon simplification to generalize buildings
correctly. These are the typical examples of preprocessing.

Processing operations comprise the atomic core of generalization algorithm and can be a kind of: point removal
(Douglas and Peucker, 1973), replacement of a line segment by a representative point in a grid cell (Li, Openshaw,
1992), edge contraction (Dey et al., 1999), edge move (Buchin et al., 2011), creating a short-cut (Haunert and Wolff,
2010) and so on.

Finally, the evaluation of the conditions and performing operations must arranged into workflows, which are
usually sequential or iterative (Li, 2007), but can also be implemented by means of optimization (Sester, 2005;
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Figure 1: Example of administrative borders with mixture of irregular and orthogonal segments (Akhangelsk and
Komi regions in Northern European Russia).

Haunert and Wolff, 2010).

Any line generalization algorithm is a mixture of the elements described above. While many algorithms are
developed for the common case of the line or polygon, some of them have the specific combination of elements
developed for the particular kind of the source data. These include buildings (Damen et al., 2008; Bayer, 2010;
Buchin et al., 2011) which tend to have artificially sharp or curved angles, coastlines and contours (Wang and
Muller, 1993; Ai, 2010) that commonly have hierarchical structure of bends.

These propositions are global (appliable for the whole line) for the mentioned kinds of objects. Thus, wall
squaring can be applied to all objects in buildings layer without the lost of meaning. At the same time, there are
line datasets that contain both regular (squared and arc-like) and irregular (with no shape pattern) segments. One
common example is administrative borders of states and counties in USA that may follow parallel and meridian
directions in one part (being straight or squared) and follow rivers and mountain ridges in another (being natural-
looked). Another example from Russian administrative borders of such kind are presented in Figure 1. In this case,
no one algorithm from those mentioned above would be effective globally.

In this paper we present the approach to generalization of such kind of lines. It performs line segmentation into
squared and non-squared parts and applies the appropriate generalization algorithms to achieve the geographically
meant result. Our preprocessing and processing workflows are expounded in the methodological part of the paper.
Finally experimental results on Russian administrative units are presented and discussed.

2 Methodology

We developed an approach to generalization of lines consisting of both irregular and orthogonal segment patterns.
The approach consists generally of two steps: preprocessing that derives right angle sequences and actually pro-



19th ICA Workshop on Generalisation and Multiple Representation, Helsinki, 14 June 2016

cessing that is performed separately for orthogonal and irregular line parts.

The intuitive term right angle should be formalized to be applied in a generalization workflow, because it includes
not only the value of angle, but also some characteristics of line edges that comprise the angle. To achieve this we
put forward the following requirements:

e The angle should be composed by two line edges which are long enough to be perceived. I.e. angle should be
visible to the map user. Thus, we need to set the length tolerance S. Each side of the angle must be longer
or equal to S. The value of S depends on the resolution of the source data, thus it is convinient to set it in
millimeters on screen. Then the number of long segments will depend on the scale of visualization that is set
at the preprocessing stage,

e The angle should be approximately equal to 90°. Some corners on the map are perceived as right or almost
right, although in fact they are slightly more or less than 90°. The strict equality is ineffective since borderlines
are often do not follow the accurate right angle sequence. Digitizing errors and precision will also affect the
angle values. Thus we also need some angle tolerance & that allows us to consider the angle as right if it’s
value is in the 90° £ & neighbourhood.

Because the density of line points may vary and also there can be a noise in point coordinates we need to remove
extra points and thus clear the line for the effective search of the long edges. This operation can be performed using
any point-reduction (Li, 2007) algorithm with small linear tolerance (about 0.5 on screen).

Considering these issues, the preprocessing stage consists of three steps:

1. Extraction of long straight edges

2. Detection of right angles and right angle sequences

3. Squaring of right angle sequences

The source data for preprocessing is the line string given by vertices — two dimensional points representing some

linear geographic object (borderline of the state, river, contour of the continent etc.).

2.1 Preprocessing
2.1.1 Straight edge extraction

To extract long straight edges we applied a simple sequential point-reduction algorithm based on perpendicular
distance d (Lang, 1969). The idea is to apply it with small linear tolerance that will almost have no impact on the
shape of the line, but will remove extra points. The algorithm works as follows:

1. Let the first point of the polyline be a start point p;.
2. Skip pi11 and let p; 12 be an end point p;.

3. Take the straight line [ through p; and p;.

W~

. Compute the perpendicular distance dj between the line [ and each point p; between p; and p;.
If all di, less than d then j = j + 1. Goto 3.

Else delete all points between ¢ and j — 1. Let ¢ = j — 1 and goto 2 if we have not reached the end of the
polyline.

Finally, all the intermediate points are deleted. Using the small value of d we are able to remove small and
invisible details from the line. Then the edges which are longer than S are considered to be long straight edges.

2.1.2 Detection of right angles and right angle sequences

The angles are calculated between the two adjacent line edges which both have length more than S. Let p; be the
i-th vertex of the line and B; be its angle value. We denote by e; the edge between p; and p; 11, and [; is the length
of €;.

Let s; = min(l;—1,1;) be the length of shortest angle side, a; = [3; — 7| is deviation of the angle from right and
& is the maximum allowable value of «; for the angle with s; =.S. We call & angle tolerance. If a; < & and s; = 5
then the angle is marked as right.
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Additionally, & must be corrected for the cases when s; > S. This is up to two reasons. First, the human
eye is capable of estimating angles more accurately when angle sides are longer. The next reason is that squaring
the angles with long edges will lead to significant shifts of the edge endpoints, which will eventually lead to large
distortion of the shape and probably some topological errors. Therefore, the longer is the shortest side of the angle,
the smaller should the value of &.

We call this the corrected angle tolerance &; and calculate it using the the following equation:

A _ 5i—5
Q=& (1 s, ) , (1)

where k£ > 1 is inhibition parameter. The greater is k, the slower angle tolerance decreases in proportion to the
increase of the shortest angle side. This transformation is illustrated in Figure 2 with S = 2 mm and & = 10°.
When k& = 1.0, then the proportion is inverse linear: if edge increases 5 times, then angle tolerance decreases 5
times (10°to 2°). But for k = 2.0 the angle tolerance decrease will be just 1.67 times (10°to 6°).

> k=1 k=12 k=15 k=2 o k=3 O k=5

Corrected angle tolerance (&)
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Figure 2: Relationships between corrected angle tolerance and the length of the shortest angle side

Inclusion of such a parameter allows us to consider the angles with relatively long sides for squaring and convey
some experiments for selection of optimal value of k which will be described later.
2.1.3 Squaring of right angle sequences

It is a well established rule in cartographic generalization to make the relations stronger in smaller scales. Thus fuzzy
relations become strict and almost perpendicular lines must be made prependicular. So, before further simplification
we need to make the angles in right angle sequences be exactly right.

The squaring is performed in a following manner for each sequence:

1. Compute the total lengths of odd and even edges. The largest sum corresponds to the more extended direction
or the main orientation of the sequence.

2. For each edge in main orientation compute the convergence angle v; between the edge and the Y axis.

3. Obtain the weighted average of ; as the descriptor of main orientation:

Yav = ZZ i ;
il

4. Rotate each edge in the main direction around its middle point so that its convergence is strictly equal to 7,.,.

5. Reconstruct each secondary edge by building the line going through its middle point and perpendicular to
adjacent main direction segments.
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After the preprocessing each point gets one of the four types:

1. Ortho — right angle point.

2. Two straights — the angle is formed by two long straight edges which do not intersect at right angle.
3. One straight — only one adjacent edge is long straight while the other is shorter than S.

4. No straights — both adjacent edges are shorter than S.

The following three figures illustrate the preprocessing step and influence of parameters S, & and k. This
example is constructed by the two polylines adjacent at the south-eastern point. Figure 3 shows the influence
of angle tolerance on the detection of right angles. Obviously, the larger is tolerance, the more is the number of
detected right angles.

a=0.0 a=1.0 a=20 a=5.0 a=100 a=15.0
» Ortho
* Two straights
*  One straight

Figure 3: Squaring of detected right angle sequences with different angle tolerances (k = 3,5 = 2)

Figure 4 shows the influence of length tolerance S on the detection of right angles. Here, smaller lengths does
not mean larger nummber of right angles. This can be learned by comparing the facets with S = 1.0 mm and
S = 2.0 mm on Figure 4. The angle at black point for S = 1.0 is not considered to be right because of the corrected
angle tolerance for that angle that depends on the length of shorter edge.

=10.0 S=15.0

$=1.0 $=20 $=3.0 $=5.0 S
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Figure 4: Squaring of detected right angle sequences with different step tolerances (k = 3, & = 15°)

Finally, Figure 5 illustrates the influence of ihibition parameter k on the detection of right angles. Here, larger
inhibitions expectedly lead to the increase in the number of detected right angles.

An optimal parameters for this example are & = 15.0°, S = 2.0mm and k = 3.0. They will be used later in
results section for the generalization of the whole dataset.

2.2 Simplification of regular line parts

Geometric simplification of regular line parts which are right angle sequences, can be theoretically performed by
various approaches. This slot in technological scheme can be fulfilled by methods such as edge-move (Buchin et al.,
2011), shortcut (Haunert and Wolff, 2010) or some other technique adopted from building generalization domain.
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k=1.0 k=1.2 k=1.5 k=20 k=3.0 k=5.0
= Ortho
* Two straights
= One straight

Figure 5: Squaring of detected right angle sequences with different inhibition values (& = 15°, 5 = 2)

We based the simplification of regular parts on edge contraction procedure. First, user should set the resulting
scale which is ¢ times smaller than the source scale. Then edges shorter than S in the resulting scale must be
contracted. The same result can be achieved if we fix the preprocessing scale and enlarge S by multiplying it on ¢
for simplification, but this makes the methodology less clear.

To decide how the contraction should be made, a set of possible configurations has been derived. These are
classified into Z-like, U-like, endpoint and short configurations in Figure 6. In case of Z- and U-like configurations
the contracted edge e; is replaced by the edge prependicular to it and connected to the e;_s and e;yo or their
extensions. Thus, e;_; and e;;1 are removed and the line structure is reindexed. Endpoint and short configurations
are the special cases. Contraction of the first edge of the orthogonal part is made by shortcut between p; and e3 thus
replacing e; and es by a single edge. The similar approach is applied in case of the last point. Finally, all 3-point
configurations and 4-point with contracted middle edge are replaced by a straight edge connecting endpoints.

The topology is preserved in a simplistic manner: if edge contraction leads to topological error (intersection
with other edges), then this contraction is prohibited. We plan to implement a wider set of possible contractions in
future. That will allow us to apply alternative strategies in case of topological errors istead of the simple prohibition.

A Z-like B U-like C  Endpoint D  Short

4 points 3 points

L L JL

Figure 6: Edge contraction strategies for various configurations of orthogonal line segments. Endpoints are sym-
bolized with hollow dots, old configuration is a dotted line, contracted edge is marked by X sign and the new
configuration is depicted in red

The applied simplification algorithm has three parameters:
e resulting scale factor in meters per mm on screen;

e the generalization tolerance d in mm on screen, which is used to parameterize Douglas-Peucker or Li-Openshaw
algorithm for simplification of non-orthogonal (irregular) parts of the line.

e the minimum length of the line segment S in mm on screen.

An example simplification of a small line part is presented in Figure 7.
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Squared source t=3 t=4 t=8 t=12

Figure 7: Example simplification of orthogonal line part. ¢ parameter corresponds to decrease in scale.

3 Results and discussion

The above methodology was implemented in a computer program using C++ language. We selected Komi and
Arkhangelsk regions to assess the effectiveness of methodology proposed. One can distinguish the three types of
line patterns looking at Figure 1:

1. irregular lines, following natural borders (rivers, ridges) or not related to any of them but constructed artifi-
cially without regard to any selected azimuth. These occur mostly along the outer border of the area and in
the western (Arkhangelsk) part of the selected area

2. long straight lines of arbitrary direction. These occur mostly in the northern part of the region and are so
long that will hardly be a subject of generalization

3. ladder-like lines composed of short and middle-length straight edges. These edges are perpendicular to each
other and comprise a sequence of of Z- and U-shape steps.

We performed the preprocessing in the source scale (1:1 000 000, 1000 m in 1 mm on the screen) with varying
values of d, &, S and k parameters. Here we will present the results obtained with d = 0.5 mm, & = 15°, § = 2
mm, k = 3.0 which proved to be effective particularly on this dataset.

After preprocessing the simplification was done with reduction of scale in t = 2, 4, 6, 8, 10, 12, 14 and 16 times
with S = 2 mm and d = 1.0 mm parameters. That is, line segments in orthogonal part of the line are contracted
if they visible length is smaller than 2 millimeters in a resulting scale. And d is used to parameterize the grid
resolution of Li-Openshaw algorithm which is applied in other parts of the line.

The results are presented in Figure 8. For shape comparison we applied Li-Openshaw (1992) and Douglas-
Peucker (1973) algorithms globally without line preprocessing and the results are presented in Figures 9 and 10.
Generalized Hausdorff distances were calculated in each case for precision assessment and represented in graphic
form in Figure 11. This is the average of all Hausdorff distances calculated for each line and its generalized result.

Looking at Figure 8 one can note that the proposed approach emphasizes the orthogonal nature of the corre-
sponding line parts. This can be considered a kind of a typification process applied to the orthogonal line bends.
Small steps are aggregated into larger ones which results in an orthogonal pattern reproduced for smaller scale visu-
alization. This algorithm gives intermediate precision of the result, according to Figure 11. Li-Openshaw algorithm
is applied in other parts of the line dataset which helps to keep the smooth shape of the natural lines.

Li-Openshaw (Figure 9) algorithm works very well in irregular (natural) parts of the line, giving the line that
both smoothly and precisely fits into she shape of the original one. However it fails to represent the shape pattern
of the orthogonal line part, making it spineless and round-cornered. This also concerns non-right angles at which
long straight segments are intersected. Li-Openshaw algorithm gives the best precision of the result, according to
Figure 11.
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Figure 8: Line generalization with proposed approach. Non-orthogonal parts are generalized with Li-Openshaw
(1992) algorithm

In the opposite, Douglas-Peucker (Figure 10) algorithm works better in orthogonal part of the line and helps
to keep its edgy and angular nature. However this edgy approach is spread over the whole dataset making natural
line parts also artificially looked. Additionally, Douglas-Peucker algorithm does not preserve right and near-right
angles which leads to distortion of the original shape. Douglas-Peucker algorithm gives the worst precision of the
result, according to Figure 11 and demonstrates linear dependency between the Generalized Hausdorff distance and
the reduction of scale.

Based on the analysis of these fugures we derive the conclusion that the best solution can be obtained by
the combination of the three approaches. First, orthogonal parts of the line can be extracted and generalized by
specialized algorithm like that is presented in this paper. Next, the remaining part of the line should be subdivided
in two sub-parts. The first sub-part should include the sequences of the long straight lines that do not intersect
at right angles. These can be generalized by Douglas-Peucker algorithm to keep their edgy nature. Finally, all the
remaining line segments can be generalized by Li-Openshaw algorithm to keep their smooth and natural appearance.
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Figure 9: Line generalization with Li-Openshaw (1992) algorithm
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Figure 10: Line generalization with Douglas-Peucker (1973) algorithm
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Figure 11: Generalized Hausdorff distances for various algorithms
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