A Stroke-based Approach to Detect Patterns of Discrete Buildings for Generalization Purposes

Xiao Wang and Dirk Burghardt
Institute of Cartography, TU Dresden

20th ICA workshop on Generalization and Multiple Representation, Washington, 01/07/2017
Outline

- Introduction
- Methodology
- Experiment and discussion
- Outlook
Motivation

OpenStreetMap

Level 17

Level 16

Level 15

Level 14

Without generalization

Legible problem
Research status

• Many researchers have paid attention to building generalization

• Main idea of building generalization [Li et al., 2004]
 Two steps: 1. Building Grouping (pattern detection)
 2. Generalization execution
Methodology

Step 1: Pattern detection by stroke
(1) Stroke construction
(2) Stroke pruning
(3) Stroke classification

Step 2: Generalization execution
Different patterns, different generalization strategies
Methodology

Step 1: Pattern detection by stroke
(1) Stroke construction

Original data

CDTN

Proximity Graph

Distance

Refined Proximity Graph

Good continuation

Stroke construction
Methodology

Step 1: Pattern detection by stroke
(2) Stroke pruning

Rule 1: Deleting the short strokes which are connected only by normal strokes.

Rule 2: Deleting the strokes related three-building which connect with strokes that relate more than four buildings.
Methodology

Step 1: Pattern detection by stroke
(2) Stroke pruning

Original stroke

Pruned stroke
Step 1: Pattern detection by stroke
(3) Stroke classification

- Short strokes group
- Non-Stroke
- Isolated stroke
- Isolated short stroke
- Strokes group
Methodology

Step 1: Pattern detection by stroke

Building pattern detection

<table>
<thead>
<tr>
<th>Type</th>
<th>Type 1</th>
<th>Type 2</th>
<th>Type 3</th>
<th>Type 4</th>
<th>Type 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Picture</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stroke class</td>
<td>Isolated stroke</td>
<td>Strokes group</td>
<td>Short strokes group</td>
<td>Isolated short stroke</td>
<td>Non-stroke</td>
</tr>
<tr>
<td>Building pattern</td>
<td>Linear like alignment</td>
<td>Linear like cluster</td>
<td>Irregular cluster</td>
<td>Irregular cluster</td>
<td>Isolated building</td>
</tr>
</tbody>
</table>
Methodology

Step 2: Generalization execution

➢ Type 1: Linear like alignment

Typification
Methodology

Step 2: Generalization execution

- Type 2: Linear like cluster

Intersected Building

Intermediate Building

Hanging Building
Methodology

Step 2: Generalization execution

➢ Type 3: Irregular cluster

Situation 1

Aggregation

Situation 2

Typification

Situation 3

Elimination
Methodology

Step 2: Generalization execution

- Type 4: Irregular cluster

Situation 1

- Aggregation

Situation 2

- Partial Aggregation
Methodology

Step 2: Generalization execution

- Type 5: Isolated building

Selection based on distribution density

A

B

C

D

A

B

C

D

X
Experiment and discussion

Generalized results

- Original building
- Generalized building
Experiment and discussion

Discussion

- Advantage

Original distribution can be preserved
Experimental Results

Discussion

- Weakness

- High density region

- The affect of large and long edge buildings
Outlook

- Evaluation of the generalized results
- The effects caused by road generalization
Thank you!

Xiao Wang
xiao.wang@tu-dresden.de
Dirk Burghardt
dirk.Burghardt@tu-dresden.de
Questions?

Original building
Generalized building