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Abstract: The preservation of stream sinuosity is an important but as yet un-emphasized process in generaliza-
tion of hydrographic line features, especially when the reduced-scale data are used for mapping as well as for analy-
sis.   This paper reports initial experiments that document relations between sinuosity and map scale in hydrographic 
line feature data undergoing generalization processing. Thirty-eight stream sections are sampled from four scales of 
benchmark hydrographic data (1:24,000, 1:100,000, 1:1,000,000 and 1:10,000,000) to measure sinuosity values and 
change in sinuosity caused by different levels of generalization and line simplification. Empirical results indicate 
traditional methods of generalization and line simplification compress the variation in sinuosity values, making the 
data less suitable for scientific investigations involving stream sinuosity than the original source data. An alternative 
line simplification approach that applies a relatively constant reduction of sinuosity to each feature for a prescribed 
scale is proposed and tested. The simplification process uses the Bend-Simplify algorithm and iteratively adjusts the 
tolerance for each feature until the reduction in residual sinuosity is within target limits. The proposed approach 
produces distributions of sinuosity values that retain much more variability than traditional generalization methods, 
and that more accurately reflect the distribution of sinuosity values of the original 1:24,000-scale features than the 
distributions from traditionally generalized data. 
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1. Introduction  

Cartographic generalization has been challenged for decades by the demand for simplification rules that are fully 
automated (Tobler, 1966; Li and Openshaw, 1992), and that generate consistent results (Shea and McMaster, 1989). 
Muller (1991: 457) commented on the problem following several decades of generalization research efforts, stating 
that “The identification of rules and their implementation into a system which can simulate the work of a traditional 
cartographer is one of the most difficult challenges facing the GIS research agenda of the 1990s”. Savino (2011) 
points out that while significant progress was made in the ensuing decade, full automation is not yet achieved. A re-
cent example of the level of automation that can be achieved for cartographic generalization is described in Stoter et 
al. (2014), and details of cartographic generalization being applied within several National Mapping Agencies are 
presented by Duchêne et al. (2014) and by Stoter et al. (2016). 

Challenges persist with the generalization of terrain and hydrography data that are scale sensitive; that may vary 
considerably across landscape type, precipitation regime, and human settlement patterns (Buttenfield et al., 2011; 
Stanislawski and Buttenfield, 2011), and that must integrate vertically following simplification processing (Stani-
slawski et al., 2013). Effective generalization produces simplified features that are legible and retain geometric char-
acteristics for analytic purposes, such as length, connectivity, texture, and shape, including sinuosity.  

Stream sinuosity is the tendency of a stream to meander across a flood plain, and it may be estimated as the ratio 
of channel length to valley length (Schumm, 1973). Stream sinuosity is an important characteristic that is related to 
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terrain slope (Lima, 2007; Lazarus and Constantine, 2013), displacement of alluvial materials (Bledsoe et al., 2008), 
discharge (Petrovszky et al., 2014) and flow resistivity (Lazarus and Constantine, 2013); and it can play an im-
portant role in 3-D modelling of stream channel beds (Merwade and Maidment, 2004). A number of hydrology re-
searchers have demonstrated the complexity of such numeric relations, as for example the classic work of Langbein 
and Leopold (1966) who quantified the emergence of channel meanders in adjusting stream depth and velocity. Wil-
liams (1986) expanded on their work, demonstrating predictable relations between meander size (i.e., sinuosity) and 
specific measures of channel geometry. While studying mid-channel traces of streams on 1:24,000-scale (24K) 
topographic maps for plateau and lowland regions in Indiana and Kentucky, Snow (1989) showed that meander sin-
uosity can be modeled at scales one to two orders of magnitude larger than channel width using fractal curves, and at 
smaller scales by simpler geometric curves; thus establishing that predictive calculations of planform sinuosity at 
scale are achievable when constrained by terrain slope and roughness. Willemin (2000) shows empirically that 
channel sinuosity plays a primary role in stream basin shape and size. 

Developing rules that preserve pattern, including sinuosity, in stream networks during generalization processing 
will ensure the utility of the generalized data for mapping and analysis (Zhang and Guilbert, 2016), including 
preservation of characteristic angularity (Gökgöz et al., 2015), which has been shown to have distinct patterns in ar-
id and humid landscapes (Seybold et al., 2017). The research problem is to identify a logical and robust rule to esti-
mate an appropriate amount of sinuosity to remove during simplification to smaller scales. The Radical Law (Töpfer 
and Pillewizer, 1966) has been used in generalization to constrain reductions of hydrographic line feature length 
(Buttenfield et al., 2011) in addition to reducing the number of features. However, rules that guide the adequate re-
duction of more complex geometric characteristics when simplifying features are not specifically defined in present 
literature. Sinuosity should decrease at smaller scales, which raises questions. First, is the rate of decrease linear or 
nonlinear, and is it constant across all scale ranges? Second, can the rate of decrease be controlled by choice of sim-
plification tolerance, and can this constraint apply across landscape type and slope categories? This paper evaluates 
the relationship between the sinuosity of linear hydrographic features observed at four benchmark compilation 
scales with the tolerance values used to simplify corresponding features to these reduced scales. A starting point for 
examining rates of sinuosity reduction with scale change is modeled from the measured values.  

2. Methods and Data Samples 

Methods in this paper apply the Bend-Simplify algorithm (Wang and Muller, 1998) to hydrographic line features 
to reduce the residual sinuosity of each feature by a similar proportion. Sinuosity is computed as a ratio of the length 
of a vector feature through all of its vertices divided by the Euclidean distance between the start and end points of 
the feature. Residual sinuosity is 1.0 minus the sinuosity. For instance, a feature with a sinuosity of 1.5 has a residual 
sinuosity of 0.5, indicating that the feature contains additional crenulations relative to a completely straight line. Da-
ta sampling and geoprocessing are completed with ArcGIS® tools and custom Python scripts. 

 

 
Fig. 1.  Distribution of 38 linear stream features sampled from the 1:10,000,000-scale USGS National Atlas vector hydrographic dataset. 
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To estimate the benchmark levels of simplification implemented for linear hydrographic features at several 
scales, 38 sections of corresponding linear stream features were sampled from four scales of published USGS vector 
datasets: 24K National Hydrography Dataset (NHD), 1:100,000-scale (100K) NHD, 1:1,000,00000-scale (1M) Na-
tional Atlas, and 1:10,000,000-scale (10M) National Atlas. Sample sections were initially selected from 10M Na-
tional Atlas hydrographic data with the expectation that all the sampled smaller scale features are also represented in 
the larger scale datasets. Both headwater-to-confluence and confluence-to-confluence sections were selected from 
38 rivers that are distributed over the various climate and terrain conditions in the conterminous United States (Fig-
ure 1). As defined in the 10M data, thirty-five of the samples are composed of ‘river or stream’ feature type, and 
three samples are composed of ‘intermittent stream’ type.  

The 24K and 100K NHD were originally compiled largely from the blue-line hydrographic features on the 24K 
USGS Topographic maps (Stanislawski, 2009), with the 100K features being re-scribed from photo-reduced mosaics 
of the 24K maps. The 1M National Atlas hydrographic data are generalized from the 100K NHD using the Bend-
Simplify algorithm with a 500 m tolerance (Gary et al., 2010). The 10M data were originally generalized from 
1:7,500,000-scale vector hydrographic data and matched with 10M coastline features by USGS National Atlas car-
tographers (USGS et al., 2006).  

The sample collection process first selected the larger scale features within a 5 kilometer (km) buffer around the 
10M features, and then sub-selected features by the associated name from the Geographic Names Information Sys-
tem (GNIS) database maintained by USGS. Some subsequent editing of the selected set was necessary to ensure the 
features followed similar paths that start and end at nearly the same locations. Figure 2 shows the section the Ala-
bama River (sample #33). Samples selected from the 24K NHD include over 13,000 features comprised from about 
10,500 ‘artificial path’, about 2,700 ‘stream/river’, and 40 ‘connector’, ‘canal/ditch, or ‘pipeline’ feature types. ‘Ar-
tificial path’ features represent primary flow paths through polygonal waterbody features, such as a stream, canal, 
lake, or pond (USGS, 2000).  

 

         
Fig. 2.  Sample of vector data for a section of Alabama River selected from 1:10,000,000-scale and 1:1,000,000-scale National Atlas da-
ta, and 1:100,000-scale and 1:24,000-scale and National Hydrography Dataset (NHD) data. Black box in left panel is the boundary of 
center panel. Black box in center panel is the boundary of right panel, which also includes 2017 National Agricultural Imagery Program 
(NAIP) photography. 

3. Analysis and Results 

3.1 Generalized River Sections 

To quantify the proportion of 24K stream sinuosity that is retained in smaller scale streams, residual sinuosity 
values were computed for each of the 152 samples: 38 river sections from the four scales of hydrographic data. The 
differences in residual sinuosity between each 24K sample and the corresponding sample from the three smaller 
scale datasets were computed by subtraction, and converted to a percentage of the 24K residual sinuosity. Histo-
grams and summary statistics (mean, standard deviation, minimum, and maximum) were compiled for percent dif-
ference in residual sinuosity.  

The range (maximum minus minimum) of residual sinuosity values are 1.75, 1.72, 1.37, and 0.62 for the sets of 
24K, 100K, 1M, and 10M stream features, respectively. The histograms in Figure 3 show that the percent differ-
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ences in residual sinuosity of the 24K sample and each of the smaller scale samples range from about -30 to 21, -48 
to 13, and -96 to -9 percent for the 100K, 1M, and 10M differences, respectively. The sinuosity of most of the 
smaller scale samples is reduced (negative percent difference), except where a straighter and shorter human-made 
path exists in the 24K data. The primary issue, demonstrated by these results, is that sinuosity is altered by differing 
amounts in each of the generalized scales and the change in sinuosity increases and becomes less consistent with 
bigger scale jumps. Therefore, scientific analyses involving stream sinuosity probably are not well supported with 
these generalized data, particularly at smaller scales. 

 

         
Fig. 3.  Histograms of percent difference in residual sinuosity between 1:24,000-scale (24K) and three smaller scales: difference from 
24K to 1:100,000-scale (100K), 24K to 1:1,000,000 (1M), and 24K to 1:10,000,000-scale (10M). Values are summarized for all corre-
sponding samples of 38 river sections distributed over the conterminous United States.  

3.2 Simplified River Sections 

To assess the impact of the Bend-Simplify algorithm on hydrographic lines, the set of 24K samples were simpli-
fied with 50 meter (m), 500 m, and 5,000 m tolerance values to mimic simplification that is typical for 100K, 1M, 
and 10M (e.g., see Gary et al., 2010). These tolerance values are roughly equivalent to maximum positional accura-
cy requirements of 1/50th of an inch at the associated scales based on United States National Map Accuracy Stand-
ards (US Bureau of Budget, 1947). The tolerance for the Bend-Simplify algorithm is the minimum diameter of a cir-
cle that estimates a significant bend in a feature’s shape that should be retained. All smaller bends are removed by 
the algorithm. After simplifying the 38 24K samples with the three tolerance values, histograms and summary statis-
tics were compiled for percent differences in residual sinuosity between the 24K samples and corresponding features 
in the three simplified versions. In addition, vertices per km values were determined for each set of simplified fea-
tures. The range of residual sinuosity values for the three sets of simplified features are 1.74, 1.40, and 0.65 for the 
50 m, 500 m, and 5000 m tolerances, respectively. These values are very consistent with ranges of residual sinuosity 
values for the associated scales of benchmark data (100K, 1M, and 10M). Percent differences in residual sinuosity  

 

       
Fig. 4.  Histograms of percent difference in residual sinuosity between 1:24,000 (24K) vector hydrographic line features and three levels 
of simplification (tolerance of 50, 500, and 5,000 meters) with the Bend-Simplify algorithm. Percent differences computed between: 24K 
and 50 meter, 500 meter, and 5000 meter simplifications, and summarized for all corresponding samples of 38 river sections. 
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of corresponding samples from 24K data to the three levels of simplification range from -13.73 to -0.0017, from       
-47.19 to -0.62, and from -89.16 to -8.99 for simplification with 50 m, 500 m, and 5000 m tolerances, respectively. 
And, median percent differences in residual sinuosity of simplified features compared with corresponding 24K fea-
tures are -0.32, -10.98, and -55.21 for simplifications with 50 m, 500 m, and 5000 m tolerances, respectively. Histo-
grams of these data are shown in Figure 4. 

Comparison of Figures 3 and 4 indicate the change in sinuosity for the three sets of simplified features follows 
similar patterns in range and magnitude of reduction in sinuosity, with 100K similar to 50 m tolerance, 1M similar to 
500 m tolerance, and 10M similar to 5000 m tolerance. However, simplification with 50 m tolerance shows less var-
iability than the 100K data, which can be explained by the fact that 100K data were generalized through a re-
scribing process rather than through a single simplification operation.  

3.3 Simplification Constrained to Preserve Stream Sinuosity 

Empirical data presented in the previous sections demonstrate that simplification of linear streams reduces varia-
tions in stream sinuosity, which reflect climate and terrain variations. In this section, a new simplification method is 
tested that constrains the change in residual sinuosity for each simplified feature to a relatively constant amount in 
order to better preserve variability of sinuosity. Three levels of simplification effective for 100K, 1M, and 10M are 
generated such that the minimum reductions in residual sinuosity, as shown in Figure 4 and described in the section 
3.2, are applied to all features at each scale. To meet this constraint, reductions of residual sinuosity are limited be-
tween 0.0015 to 0.0020 percent for 100K, between 0.60 to 0.65 percent for 1M, and between 8.95 to 9.00 percent for 
10M, which are respective ranges centered on the minimum simplification changes produced by 50 m, 500 m, and 
5000 m tolerances. The process separately simplifies each of the 38 24K sample features with the Bend-Simplify al-
gorithm using a tolerance that meets the constraint for each target scale. Processing iteratively adjusts the tolerance 
for each feature until the reduction in residual sinuosity falls within the predefined limits. The constraint applied in 
this test case is not meant as a recommendation, but rather demonstrates a minimal level of simplification that may 
be achieved. Whereas larger reductions in sinuosity may be more appropriate in practice. 

Table 1. Statistical summary of simplification results for 38 1:24,000-scale (24K) stream samples using the Bend-Simplify algorithm, 
with tolerance values adjusted to constrain the change in sinuosity to minimum levels associated with 1:100,000-scale (100K), 
1:1,000,000-scale (1M), and 1:10,000,000-scale (10M) hydrographic data. Percent differences are computed as the residual sinuosity of 
the simplified stream sample minus the residual sinuosity of the 24K stream sample, and are expressed as a percent of the 24K residual 
sinuosity. 

   
100K Tolerance 
(meters) 

100K to 24K 
Residual 
Sinuosity 
Percent   
Difference  

1M Tolerance 
(meters) 

1M to 24K 
Residual 
Sinuosity 
Percent 
Difference 

10M Tolerance 
(meters) 

10M to 24K 
Residual 
Sinuosity 
Percent Dif-
ference 

Average 15.3158 -0.0026 118.1368 -0.6376 850.2632 -9.3854 
Standard Deviation 14.4636 0.0016 108.6103 0.0513 935.2254 0.5947 
Minimum 3.4000 -0.0085 18.0000 -0.9195 39.7000 -11.7104 
Maximum 50.0000 -0.0015 445.0000 -0.6006 3915.0000 -8.9658                      

 
Table 1 summarizes statistics for tolerance values and resulting percent differences in residual sinuosity between 

simplified sample features and corresponding 24K features. Negative percent difference values indicate that simpli-
fication reduces the residual sinuosity of the features. Restricting the change in sinuosity to the small limits for each 
scale requires relatively wide ranges of simplification tolerance values from 3.4 to 50 meters, from 18 to 445 meters, 
and from 39.7 to 3915 meters for 100K, 1M, and 10M versions, respectively. It is not possible to find Bend-Simplify 
tolerance values that reduce the sinuosity of all features precisely within the target ranges. For instance, the 11.7 
percent reduction of sinuosity for simplification to 10M is above the 9.00 percent target maximum. Physical limita-
tions of the features or the granularity of the 24K representations likely control these results.  

Constraining the reduction of sinuosity to the target limits results in ranges of residual sinuosity of 1.75, 1.74, and 
1.60 for the 38 samples simplified to 100K, 1M, and 10M, respectively. These ranges represent 2, 27, and 157 per-
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cent higher variability in sinuosity of the simplified features compared to the benchmark features. Thus, the distribu-
tions of sinuosity values resulting from the proposed approach more accurately reflect the distribution of sinuosity 
values of the original 24K features than the distributions resulting from the traditionally generalized data.  This 
method produces simplified features that are more appropriate for analytic purposes than traditionally simplified fea-
tures because the correspondence to sinuosity contained in larger scale data has been preserved.  

Table 2 summarizes the vertices per km before and after simplification of the 38 samples from 24K to the three 
smaller scales using the simplification constraints that preserve sinuosity variability. Vertices per km are also pro-
vided for the benchmark data samples for comparison. Very little change in the number of vertices per km is evident 
in the 100K-simplified samples, whereas the maximum number of vertices per km is reduced from about 85 at 24K 
to about 56 and 40 vertices per km for the 1M and 10M simplified features, respectively. The reduction in feature 
granularity resulting from this method of simplification is much less pronounced than traditional techniques that ap-
ply a single Bend-Simplify tolerance value to all features. In practice, larger reductions in sinuosity that also further 
reduce average vertices per km may be more useful from a data display and delivery perspective. For instance, it 
may be better to constrain residual sinuosity to the median levels of reduction that are associated with typical simpli-
fications rather than constraining to the minimum values. 
 
Table 2. Statistical summary of vertices per kilometer before and after simplification of 38 1:24,000-scale (24K) stream samples using 
the Bend-Simplify algorithm with tolerance values adjusted to constrain the change in sinuosity to minimum levels associated with 
1:100,000-scale (100K), 1:1,000,000-scale (1M), and 1:10,000,000-scale (10M) hydrographic data. Values for the same stream samples 
from benchmark datasets are shown for comparison.  

   
Vertices per Kilometer 

 
  

  24K Simplified to 
  

Benchmark Data 
 

 
Source 24K 100K     1M 10M 100K 1M 10M 

Average 29.770 29.405 20.687 12.005 8.721 6.083 0.375 
Standard Deviation 22.854 22.768 15.411 10.589 3.536 1.565 0.105 
Minimum 5.098 4.379 3.152 1.808 1.289 2.144 0.263 
Maximum 84.812 84.636 56.074 40.292 14.788 10.171 0.740 

 
 
Figure 5 demonstrates some of the range of geographic conditions that influence the characteristic sinuosity pat-

terns that are evident in the sample stream lines. The Reese River is a high energy river in arid terrain with eleva-
tions ranging from 1500 to 2800 meters, having rugged slopes ranging from about 0 to 30 percent, and it is com-
prised of about 90 percent natural stream feature types in the 24K NHD.  This river shows high frequency details 
evident in the small bends visible at the 100K and much less noticeable at 1:2,000,000-scale (2M). Bend-Simplify 
tolerances required to achieve target sinuosity values for the Reese River range from 3.7 to 40 meters, indicating that 
this river is highly sensitive to simplification processing. The section of the Mississippi River shows a high-volume 
meandering pattern in a humid, low elevation (20 to 35 m), with nearly flat slopes throughout a smooth terrain. In 
the 24K NHD, the linear feature type for this section of river is derived artificial flow path through a wide polygonal 
river. The Mississippi line features are the least sensitive to simplification, requiring Bend-Simplify tolerances from 
about 10 to 3900 meters to achieve the target sinuosity ranges. Figure 6 shows an example of another river in arid 
terrain that requires simplification tolerances between that of the Reese and Mississippi Rivers, but closer to the 
Reese. Elevation ranges between 900 and 2200 m for the Gila River, with slopes ranging from about 1 to 30 percent. 
About 50 percent of the features in the 24K NHD comprising the Gila River are artificial path through polygonal 
streams, with the remainder being single-line stream type. Bend-Simplify tolerances to achieve target sinuosity val-
ues for this section of the Gila River range from 3.4 to 252 m. 

 



20th ICA Workshop on Generalisation and Multiple Representation, Washington D.C., 2017 7 

           
 

Fig. 5.  Small scale (1:2,000,000) and medium scale (1:100,000) displays of sections of the Reese River in Nevada (two left panels) and 
the Mississippi River in Mississippi and Arkansas (two right panels). Features shown are from the 1:24,000-scale National Hydrography 
Dataset. Red boxes in each small scale display show the extent of the medium scale display to the right. Notice in the medium scale dis-
plays that the Reese River, from an arid region, shows a high frequency of small bends which are not evident for the Mississippi River, 
which is in a more humid environment. 
 

 

 
 
Fig. 6.  Small scale (1:2,000,000) and medium scale (1:100,000) displays of section of the Gila River from an arid region in Arizona and 
New Mexico. Features shown are from the 1:24,000-scale National Hydrography Dataset. Red box in the small scale display at left 
shows the extent of the medium scale display to the right. Notice in the medium scale display that the Gila River shows intermediate fre-
quency details which manifest as high frequency detail in the smaller scale display. 

4. Summary and Discussion  

Sinuosity and other stream characteristics are affected by geomorphic processes that form the features in the 
landscape. Topographic maps and geospatial data have enabled various synoptic evaluations involving stream chan-
nel geometry for many years, as demonstrated by measurements of river widths, channel patterns and profiles from 
aerial photos and topographic maps (Carlston, 1963; Brice, 1964) and analysis of river branching angles from NHD 
data in 2017 (Seybold et al., 2017). Consequently, preservation of sinuosity and other geometric characteristics dur-
ing cartographic generalization operations has important analytic implications.  
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This paper reports initial experiments that document relations between sinuosity and map scale in hydrographic 
line feature data undergoing generalization processing. Thirty-eight stream sections are sampled from four different 
cartographic benchmark data sets (24K, 100K, 1M and 10M) to measure sinuosity values and change in sinuosity 
caused by different levels of generalization and line simplification. Empirical results indicate traditional methods of 
generalization and line simplification compress the variation in sinuosity values, making the data less suitable for 
scientific investigations involving stream sinuosity. Such reductions in detail and variability of geometric character-
istics in small scale feature representations are understandable and have been expected in the past for generalized da-
ta. This research explores possible methods to simplify linear stream features in a manner that more accurately re-
tains the geometric variability, along with positional accuracy of the data, which can better support small-scale 
regional or continental analyses. 
     An alternative line simplification approach that applies a relatively constant reduction of sinuosity to each feature 
for a prescribed scale is proposed and tested. The simplification process uses the Bend-Simplify algorithm and itera-
tively adjusts the tolerance for each feature until the reduction in residual sinuosity is within target limits. Target 
limits for 100K, 1M, and 10M are centered on minimum sinuosity reduction values determined from simplifications 
of sample 24K features with 50, 500, and 5,000 m tolerance values, respectively. The approach produces distribu-
tions of sinuosity values that retain much more variability than traditional generalization methods, and that more ac-
curately reflect the distribution of sinuosity values of the original 24K features than the distributions from tradition-
ally generalized data.  

In the tests presented, simplification was constrained to consistently minimize reduction of sinuosity for the target 
scales. However, further testing is needed to find optimal constraints for sinuosity that furnish a good compromise 
between cartographic legibility and analytic usefulness of the resulting data. A promising alternative would apply 
the median level of sinuosity reduction rather than the minimum, which might retain less variability in sinuosity at 
the target scale, yet furnish acceptable representations for data display and delivery. Assessment of results could be 
improved by including displacement metrics, following arguments made by Shi and Cheung (2006) to measure dis-
placement and shape distortion. Dual metrics can lend insights not only to shifting position of simplified line fea-
tures, but also to positional uncertainty of the source data, that may propagate to the target scales during processing 
(Cheung and Shi 2004). 

Geoprocessing of the proposed simplification algorithm was implemented through custom ArcGIS® Python 
scripts and was not optimized to handle large datasets, which will be necessary if the algorithm will support map-
ping operations. The proposed approach requires multiple simplifications of each feature. Parallel processing options 
that can distribute processing over multiple machines, such as in a Linux compute cluster, are being considered. It is 
expected that a parallel implementation of this algorithm with open source technologies on a high performance clus-
ter will enable rapid processing of large datasets containing millions of features. However, a final workflow to fully 
automate this process is not yet established. A possible goal is to develop a heuristic method that adjusts to a da-
taset’s characteristic sinuosity patterns, which as seen from this research vary uniquely across progressions of scale. 

Further work on this problem can inform and advance understanding of the complex impacts of generalization 
processing on stream channel sinuosity. It is important to note that maintaining a constant level of reduction in line 
feature sinuosity for a particular scale reduces line feature lengths in similar proportion. Consequently, it should be 
possible to work from smaller to larger scales by essentially inverting the generalization ‘transformation,’ in To-
bler’s (1966) words, reversing the reduction in sinuosity to produce more accurate larger scale estimates of feature 
lengths and sinuosity. Without this examination of the progression of reduced sinuosity, simplified feature length es-
timates likely are less accurate and less precise. Accepting this premise assumes similar characteristics and con-
sistent representations of sinuosity, and this warrants further examination. The rules applied in this study are de-
signed to retain the characteristic shape of all stream features as well as the relative difference in sinuosity between 
features in the same scale, while reducing the density of vertices and maintaining an appropriate positional accuracy 
for the features. Conceivably, accurate variations in stream sinuosity values are represented in data resulting from 
the proposed approach in a manner that better supports scientific studies than previous alternatives. 
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